Sebastian
Member for 11 years 4 months
Optionen: Bachelier Theorem für Calender Spreads
Hallo Finanzmathematiker :),
ich habe gerade im Buch von Max Ansbacher gelesen, dass er gerne dass Bachelier Theorem für Calander Spreads anwendet.
Kurz für diejenigen die es nicht kennen:
Man nimmt die Laufzeit beider Optionen und zieht hieraus die Wurzel. Anschließend bildet man das Ratio und weiß dann die Bewertung beider Optionen. Wenn also als Ratio 0,7 herauskommt, dann muss die leerverkaufte Option mindestens 70% der gekauften Option wert sein.
Arbeitet jemand von Euch mit dieser Methode?
Gruss Sebastian
Submitted by Sebastian
on
Gilt das auch bei Neumond ?
:)
@ Roland [#2]
Hoffe mal schon :)
@ Alle
Habe im Excel ein kleines Programm erstellt damit man die Bewertungen schnell errechnen kann. Wen es interessiert, kann mir eine Mail schicken dann sende ich ihm das Teil.
Gruss Sebastian
@ Sebastian [#1]
Das scheint mir ein wenig ungenau zu sein. Diese Holzhammerbewertung kann nur für Optionen ohne intrinsic value gelten, nicht aber z.B. für ITM Optionen!
Es überrascht aber nicht, wenn man bedenkt, dass der Zeitwertverlust von der Wurzel der verbleibenden Laufzeit abhängt ... (Theta einer solchen 3-Monate-Option soll etwa doppelt so groß sein wie theta einer entsprechenden 9-Monate-Option)
Gruß
Cico
@ Cicolia [#4]
Danke Für Dein Statement und schön, dass Du Dich äußerst.
Leider weiß ich nicht ganz was Du mit "Holzhammermethode" meinst. Ich brauche keine punktgenaue Analyse, weil der MM sowieso einen Spread stellt der jedwede Arbitrage für uns Drittreihler unmöglich macht.
Würdest Du sagen, dass dieses Theorem durchaus noch Sinn macht oder ist das komplette ****.
Gruss Sebastian
@ Sebastian [#5]
Aus dem Zusammenhang zwischen Prämie und Restlaufzeit ergeben sich ein paar Faustregeln, z. B.: Bei Vervierfachung der Restlaufzeit verdoppelt sich die Prämie, oder: Halbierung der Restlaufzeit verursacht ein Drittel Zeitwertverlust.
Diese Faustregeln gelten aber nur für ATM-Strikes und gleichbleibende Volatilität. Je nachdem, in welchem Rahmen Du diese Einschränkungen als real handhabbar siehst, ergibt sich daraus auch, in welchem Ausmaß die Anwendung des Theorems "noch Sinn ergibt" oder "komplette ***" ist.